RARE Project: Migration of PFOA and HFPO-DA from Contaminated Soils to Surface Water and Groundwater near Washington Works facility

- Rare Team Members
- ORD: Andrew Lindstrom, Sarah Lanier, Maria Evich, John Washington, T.C. Guillette, Jennifer Fulton
- Region 3: Regina Poeske, Rick Rogers Roger Reinhart Leah Zedella
- · Region 5: Jennifer Wilson, Carole Braverman

Data will help predict migration pathways of PFAS through soils to gw and sw resources

Washington Works Background & History

- Built around 1949 1950 by DuPont, located 5 miles west of Parkersburg, WV on the SE bank of the Ohio River
- Teflon Manufacture began in 1951 and continues to present
- PFOA used in Teflon manufacturing process used till 2013 when replaced by HFPO-DA (GenX) believed to be less toxic.
- In 2015, DuPont turned operation over to spinoff Chemours
- Chemours continues production of Teflon using GenX

EPA's SDWA Enforcement Involvement Ex. 7(A)

Emerging Research, DW Screening Levels, SDWA Order

- 2002 DW Screening Level 150 ppb 1st SDWA Order
- 2006 DW Screening Level 0.50 ppb 2nd SDWA Order
- 2009 DW Screening Level 0.40 ppb 3rd SDWA Order
- 2016 LHA (PFOA + PFOS) 0.070 ppb amended Order

note: ⊙W is in process of Ex. 5 Deliberative Process (DP)

Actions to Date by DuPont / Chemours

- Ten PWS in WV and Ohio provided with GAC treatment
- 140 private water supplies in WV and Ohio provided GAC
- 115 private water supplies hooked up to PWS
- Over 500 square miles of area impacted with PFOA > HA
- · Continuing to monitor into new focus areas of concern
- Predominant mode of contaminant transport determined to be from air emissions

GenX Monitoring

- Since 2018, Chemours voluntarily monitoring for GenX in some public and private water supplies
- Eight water supplies closest to Washington Works indicate presence of GenX in the raw untreated ground water.
- GAC treatment is effective at removing GenX in finished water
- Chemours continues to monitor wells quarterly GenX concentrations appear to be edging upward

Other Activities not Addressed by SDWA Orders

- Civil action settlement required large population toxicity study
- 70,000 population participated
- PFOA exposure related to 6 adverse health conditions
- EPA TSCA program penalized DuPont \$16 million for failure to report toxicity findings in timely manner
- DuPont agreed to undertake vast study of local impacts to soil, groundwater, vegetation, and uptake by animals and fish
- Two movies made in recent years about Washington Works facility and PFOA

Regional Applied Research Efforts (RARE) Project

- EPA ORD leading with support from R3 & R5
- EPA will be coordinating overall effort, finalizing sampling plans, and conducting chemical analysis
- Primary objective = evaluate the migration of PFAS from contaminated soils to surface water, ground water, and vegetation in vicinity of Chemours facility

Purpose of the RARE Project

- Better understand the conditions that influence movement of PFAS from soils to surface and ground waters
- More fully characterize the geographic extent of contamination around PFAS manufacturing facilities

Ex. 5 Deliberative Process (DP)

conditions that influence movement of PFAS from soils to surface and ground waters are not well known

Project Framework

- Characterize soil PFAS contamination from air emissions
- Characterize surface and groundwater concentrations and their relationships to areas with documented soil contamination
 - Identify 100 sampling sites for data to be collected
- Develop baseline measurement of other PFAS that may be in waters
 - Two references sites (one OH, one WV) to establish PFAS background
- Evaluate factors and sources that influence PFAS in local environment

Ex. 6 Personal Privacy (PP)

Study area = 150 km radius (93.2 mi) -shaded areas = govt owned lands -diamonds = different sampling points/types

Study Areas

- Airborne emissions
- Municipal water systems (>1,000 users)
- Landfills (known and unknown wastes)
- Sewage sludge applications
- Groundwater near contaminated rivers and streams
- Influence from aqueous film forming foams (AFFFs)

- 1. Determine extent of impacts from airborne emissions Samples to be collected along two predominant wind directions as far as 150 km from the facility
- 2. Smaller muni water systems not tested in EPA UCMR3 9 total Serving at least 1000 users
- 3. As PFAS wastes are known to be buried at many area landfills
- -examine the impacts at sites known to have received PFAS wastes and other area landfills within 80 km where the history is unknown.
- -Samples will include groundwater from landfill monitoring wells and
- -surface water from nearby streams that are both up and down gradient of each landfill
- 4. All municipal sewage sludge (biosolids) contains PFAS due to the frequent use of PFAS in consumer use items and the potential for PFAS-containing industrial emissions to be discharged to local WWTPs.
- -samples will be collected in portions of waterways that are both upstream and downstream of sludge application areas
- 5. At least two sites within 20 km of the fluorochemical facility have been identified as having PFAS from Chemours (PFOA and HFPO-DA) along with an additional chemical profile that is consistent with AFFF contamination (PFOS and PFHxS).
- -A total of 9 sites have been selected to confirm previous indications of AFFF use and to investigate the potential upstream origins of this contamination (Figure 7, Table 1).
- 6. At least two sites within 20 km of the facility have been identified as having PFAS from Chemours (PFOA and HFPO-DA) along with an additional chemical profile that is consistent with AFFF contamination (PFOS and PFHxS).
- -A total of 9 sites have been selected to confirm previous indications of AFFF use and to investigate the potential upstream origins of this contamination

Summary of Project Goals

- Assess the mobility and transfer rates of PFAS in different media
- Establish a geographical range of measurable impacts
- Help OH & WV with ongoing efforts to identify and remediate PFAS contaminated drinking water resources
- Aid in overall understanding of PFAS contamination and development of mitigation strategies to minimize human exposures

assess the mobility of PFAS from contaminated soils to surface and groundwater resources

Establish a geographical range of measurable impacts from historical airborne PFAS emissions from the WV Chemours facility

Help OH & WV with ongoing efforts to ID and remediate PFAS contaminated DW resources Continue to identify populations that may be exposed to PFAS

Help overall understanding + development of mitigation strategies to minimize human exposures

Ex. 5 Deliberative Process (DP)